× Coursera - Probabilistic Graphical Models (Stanford University) Close
Coursera - Probabilistic Graphical Models (Stanford University)WEBRip | English | MP4 + PDF Slides | 960 x 540 | AVC ~39.6 kbps | 15 fps
AAC | 128 Kbps | 44.1 KHz | 2 channels | Subs: English (.srt) | 23:25:47 | 1.36 GBGenre: eLearning Video / Computer Science, Engineering and Technology
What are Probabilistic Graphical Models? Uncertainty is unavoidable in real-world applications: we can almost never predict with certainty what will happen in the future, and even in the present and the past, many important aspects of the world are not observed with certainty. Probability theory gives us the basic foundation to model our beliefs about the different possible states of the world, and to update these beliefs as new evidence is obtained. These beliefs can be combined with individual preferences to help guide our actions, and even in selecting which observations to make. While probability theory has existed since the 17th century, our ability to use it effectively on large problems involving many inter-related variables is fairly recent, and is due largely to the development of a framework known as Probabilistic Graphical Models (PGMs).This framework, which spans methods such as Bayesian networks and Markov random fields, uses ideas from discrete data structures in computer science to efficiently encode and manipulate probability distributions over high-dimensional spaces, often involving hundreds or even many thousands of variables. These methods have been used in an enormous range of application domains, which include: web search, medical and fault diagnosis, image understanding, reconstruction of biological networks, speech recognition, natural language processing, decoding of messages sent over a noisy communication channel, robot navigation, and many more. The PGM framework provides an essential tool for anyone who wants to learn how to reason coherently from limited and noisy observations.
About The Course
In this class, you will learn the basics of the PGM representation and how to construct them, using both human knowledge and machine learning techniques; you will also learn algorithms for using a PGM to reach conclusions about the world from limited and noisy evidence, and for making good decisions under uncertainty. The class covers both the theoretical underpinnings of the PGM framework and practical skills needed to apply these techniques to new problems.
also You can watch my other helpful: Coursera-posts
(if old file-links don't show activity, try copy-paste them to the address bar)
MediaInfo: General
Complete name : 2 - 4 - Conditional Independence (12-38).mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 15.5 MiB
Duration : 12mn 38s
Overall bit rate : 172 Kbps
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Writing application : Lavf53.29.100
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : High@L3.1
Format settings, CABAC : Yes
Format settings, ReFrames : 4 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 12mn 38s
Bit rate : 39.6 Kbps
Width : 960 pixels
Height : 540 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 15.000 fps
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.005
Stream size : 3.58 MiB (23%)
Writing library : x264 core 120 r2120 0c7dab9
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=15 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=28.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Audio
ID : 2
Format : AAC
Format/Info : Advanced Audio Codec
Format profile : LC
Codec ID : 40
Duration : 12mn 38s
Bit rate mode : Constant
Bit rate : 128 Kbps
Channel(s) : 2 channels
Channel positions : Front: L R
Sampling rate : 44.1 KHz
Frame rate : 43.066 fps (1024 spf)
Compression mode : Lossy
Stream size : 11.6 MiB (75%)
Default : Yes
Alternate group : 1
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Screenshots
× Coursera - Probabilistic Graphical Models (Stanford University) Close
× Coursera - Probabilistic Graphical Models (Stanford University) Close
× Coursera - Probabilistic Graphical Models (Stanford University) Close
× Coursera - Probabilistic Graphical Models (Stanford University) Close
✅ Exclusive eLearning Videos ParRus-blog ← add to bookmarks
Feel free to contact me PM
when links are dead or want any repost
× Coursera - Probabilistic Graphical Models (Stanford University) Close
Download File Size:1.33 GB